Этот проект стал уникальным в своем роде – на рынке не так много решений для геоаналитики, которые давали бы возможность сбора и детального анализа информации по упущенным заказам.
Специалисты Qlever Solutions совместно с клиентом разрабатывали и дополняли ТЗ в режиме реального времени. Решение дополнительно улучшалось по факту проведения работ, пока не был достигнут результат, который обеспечил клиента максимально полной информацией для оценки причин упущенной прибыли.
Решение позволило клиенту:
- Увеличить время работы тех ресторанов, в которые часто поступали заказы после завершения рабочего дня
- Оптимизировать штат сотрудников, перераспределить команды ресторанов и доставки в соответствии с загруженностью зон и расстояниями до адресов потенциальных заказов
- Наметить потенциальное расширение первой и второй линий доставок, чтобы сократить неохваченные доставкой зоны
- Запланировать открытие новых ресторанов в регионах и районах, где есть высокий спрос на блюда ресторанов, но точек ранее не было
- Получить дополнительную прибыль в виде 18–25 млн руб. с ранее упускаемых 30–40 тыс. потенциальных заказов
В дальнейшем разработка Qlever Solutions станет основой для новых подобных решений по геоаналитике, которые могут быть полезны для маркетплейсов, ресторанных сетей, ритейла и прочих отраслей, осуществляющих доставку продукции.
Интеграция решения с инструментами для работы с картографическим контентом, такими как API 2ГИС, может помочь оптимизировать логистику и строить маршруты курьеров с учётом текущих и прогнозируемых пробок, препятствий и закрытых территорий жилых районов.
В перспективе планируем разработать ML-сервис для оценки потенциала регионов и районов с точки зрения открытия новых ресторанов и расширения зон доставки заказов.
Инструменты машинного обучения позволят оценивать территорию по важным для бизнеса критериям: плотность населения района, количество и периодичность потенциальных заказов, расположение и активность конкурентов и т. д. Это поможет не только расширить зоны доставки, но и автоматизировать процессы в отделе развития.