Data Warehouse (DWH) - корпоративные хранилища данных

Data Warehouse (DWH)


DWH объединяет данные из разных источников в единую версию правды, чтобы вы могли извлечь максимум пользы из мощной аналитики и получить преимущество в принятии решений.

Нам доверяют такие бренды как Бургер Кинг, SPAR, Газпромнефть. Для вас мы готовы организовать разбор вашей ситуации бесплатно
Стоимость внедрения проектов DWH считается по запросу:
Пилотный проект DWH
Проект внедрения
Консультация/разбор
от 300 т.р.
бесплатно
от 1,5 млн. р.

Что такое Data Warehouse и как оно
помогает экономить бизнесу

Data Warehouse (DWH, корпоративное хранилище данных, КХД) – единый репозиторий структурированных данных для построения бизнес-аналитики и аналитических отчётов.

В DWH данные поступают из информационных систем, баз данных и других источников: CRM, ERP, кассовых систем, систем бухгалтерского учета и т. д., и хранятся в подробной или агрегированной форме. Отчетность, которая строится на данных хранилища, может быть управленческой, финансовой, регуляторной или аналитической.

Чем более структурированными и актуальными данными владеет компания, тем эффективнее она сможет привлекать новых клиентов, разработать новые стратегии и укреплять свои позиции на рынке.

Современная бизнес-аналитика в сочетании с единым хранилищем данных открывает новые возможности для управления бизнесом.
  • Получайте отчетность быстро и в необходимой детализации
  • Обеспечьте простой доступ к данным для всех бизнес-пользователей
  • Принимайте эффективные решения на основе достоверной информации
Устройство DWH - структура корпоративного хранилища данных)
Data Warehouse (DWH, корпоративное хранилище данных, КХД)
Компания Qlever помогает компания выстраивать грамотную архитектуру управления данными на всех уровнях:

  • На уровне интеграции с источниками данными и настройки ETL/ELT процессов
  • На уровне хранения данных и построения корпоративных хранилищ (DWH)
  • На уровне управления качеством данных и настройки (MDM)
  • На уровне автоматизации работы с отчетностью и визуализации данных по показателям бизнеса
Устройство DWH - структура корпоративного хранилища данных)
Место Data Warehouse (DWH, корпоративное хранилище данных, КХД)
в общей архитектуре управления данными

Пилотный проект от 300*тыс. руб. до конца весны!

Средняя стоимость MVP по DWH начинается от 300* тыс. руб. (привлечение 1 специалиста на 2 недели). Стоимость полного проекта внедрения DWH рассчитывается индивидуально и составляет от 1,5 млн до 4 млн. руб.

Для уточнения стоимости приглашаем вас на первый бесплатный консультационной разбор вашей ситуации с архитектором DWH Qlever
Внедрение дашборда бизнес-аналитики
Вам необходимо DWH, если:
Корпоративное хранилище функционирует отдельно от оперативной базы данных компании. Вы можете исключить негативное влияние на другие процессы и системы, не работая напрямую с базами данных приложений, а отправлять данные в хранилище и обрабатывать их там.
Благодаря своей структурированности и оптимизации данных, КХД позволяет получить быстрый доступ к большим объемам информации без значительного влияния на производительность.
3.
В корпоративных хранилищах в удобном для анализа виде хранятся архивные, исторические данные за разный период, что позволяет проводить анализ трендов во времени. В операционной базе данных такой объем данных хранить нецелесообразно
2.
Если данные хранятся в сотнях тысяч строк, на выполнение стандартных запросов уходит много времени. В хранилище создаются сводные таблицы, агрегирующие данные. С их помощью запросы выполняются быстрее.
5.
Некоторые инструменты BI не могут работать с NoSQL (нереляционными) базами. Такие данные можно переместить в хранилище, где BI-приложения смогут получить к ним доступ.
4.
Хранилище данных структурирует всю корпоративную информацию и позволяет настроить доступ к ней таким образом, что бизнес-пользователи могут использовать только необходимые и доступные им в соответствии с ролевой моделью адаптированные данные.
6.
Хранилище позволяет актуализировать, нормализовать, обогатить данные и объединить их из различных информационных систем, таблиц и других внешних источников в единую структуру, для удобства работы и эффективной аналитики
Вы осуществляете анализ разноформатных данных из разрозненных источников
1.
Вам важно обеспечить исторический анализ данных
Вы работаете с высоконагруженными системами, содержащими критически важные для бизнеса данные
Не все ваши BI инструменты стабильно работают с имеющимися базами данных
Вы хотите ускорить обработку запросов
Вам нужны персональные дашборды и отчеты для конкретных пользователей или подразделений

Чем DWH отличается от обычной базы данных

От SQL-СУБД, Data Lake и Data Mart хранилище отличается следующими критериями:

  • Типы хранимых данных
Обычные базы данных хранят данные строго для определенных подсистем, DWH хранит данные, преобразованные для разных подразделений.

  • Объемы данных
Стандартная БД содержит только актуальную информацию, нужную в данный момент для функционирования определенной системы. КХД сохраняет исторические данные и агрегированные значения.

  • Место в рабочих процессах
Информация обычно сразу попадает в рабочие базы данных, а уже оттуда выборочно в DWH. DWH отражает состояние других баз данных и процессов в компании уже после того, как вносятся изменения в рабочих базах.

    Трехуровневая DWH архитектура

    В отличие от традиционной базы данных, DWH обычно имеет трехуровневую архитектуру:

    • Нижний уровень - одна или несколько БД, которые содержат данные, извлеченные из разных источников, например, из транзакционных баз данных
    • Средний уровень - содержит сервер OLAP для преобразования данных в структуру, подходящую для последующего анализа и сложных запросов
    • Верхний уровень - клиентский, содержащий приложения для анализа, визуализации и отчетности

    Принцип слоеного пирога

    Одна из распространенных моделей проектирования хранилища представляет собой многоуровневую (слоеную) структуру LSA – Layered Scalable Architecture, и обычно содержит в себе:

    • Стейджинг, или операционный слой первичных данных, (Primary Data Layer)
    • Ядро (Core Data Layer)
    • Слой витрин данных (Data Mart Layer)
    • Сервисный слой (Service Layer)
    Принцип слоеного пирога при построении DWH
    КХД - принцип слоеного пирога

    Стейджинг (Primary Data Layer)

    Слой хранения сырых данных, на котором выполняется их загрузка из различных источников в исходном качестве с сохранением истории изменений. Задача слоя – отделить последующие слои хранилища от физического устройства источников данных, способов забора данных и методов выделения дельты изменений.

      Ядро хранилища (Core Data Layer)

      Центральный компонент, в котором вся разрозненная информация приводится к единым структурам и ключам. Именно этот компонент хранилища обеспечивает качество данных, их целостность и полноту.

      Основные подслои ядра:


      • ODS (Operational Data Store) – хранилище оперативных данных, которые используются для построения отчетности в реальном времени, оповещений о проблемах на основе метрик и других операций. Используется, когда необходимы самые актуальные данные, но не требующие ретроспективы.
      • DDS (Detail Data Store) - хранилище максимально детализированных для источников данных, где форматы данных преобразованы к единому виду, а исходные данные обогащаются данными из системы.

        Аналитические витрины (Data Mart Layer)

        Набор структурированных данных, удобных для анализа и использования в дашбордах или других системах-потребителях. Как правило, витрины собирают данные из ядра. Витрины обеспечивают разные представления единых данных под конкретную бизнес-специфику и задачу. Также витрины могут использоваться в качестве мастер данных, например, таких как справочники.

          Сервисный слой (Service Layer)

          Обеспечивает управление всеми вышеописанными уровнями, осуществляет мониторинг данных и оперативное устранение ошибок. Он не содержит данных, но оперирует структурами для работы с качеством данных. Сервисный слой позволяет выполнять сквозной аудит данных (data lineage), использовать общие подходы к выделению дельты изменений и управления загрузкой. Также в слой включаются инструменты для алертинга (alerts), логирования (logging), оркестрации, cтруктурирования и описания данных (data catalog).
            Поможем подобрать DWH архитектуру и Tech Stack
            Какие задачи решает КХД?
            Централизация, интеграция и трансформация данных
            DWH - централизованное хранилище данных из различных источников, которое помогает структурировать их для аналитических целей. В хранилище осуществляется регулярное удаление неактуальных и ошибочных данных, их обогащение и преобразование.
            DWH централизация, интеграция и трансформация данных
            Повышение быстродействия систем аналитики при единовременном снижении нагрузки на информационные системы
            Загрузка больших объемов данных, их оптимизация и обработка аналитических запросов через КХД помогает снизить нагрузку на операционные системы и улучшить производительность транзакционных систем. При этом скорость построения отчетов и дашбордов на основе оптимизированных данных повышается в десятки раз.


            Повышение быстродействия DWH систем аналитики
            Расширение возможностей аналитики и повышение качества принятия решений
            DWH сохраняет исторические данные для проведения анализа трендов во времени, а также предоставляет возможность проводить сложный анализ данных, включая многомерный анализ, детализацию и сверку.
            Благодаря единой версии правды и расширенным возможностям аналитики, DWH помогает принимать эффективные управленческие решения, основанные на данных, а не на интуиции.


            Обеспечение безопасности данных
            КХД предоставляет возможности контролируемого доступа, шифрования и мониторинга активности при работе с конфиденциальными или регулируемыми данными.


            Основные источники данных для работы с корпоративным хранилищем

            Сложности при создании КХД

            В статье рассказываем, с какими проблемами сталкиваются компании при самостоятельном построении хранилища, и как получить ожидаемые результаты от внедрения КХД.

            КХД как инструмент для анализа данных

            • Системы бизнес-аналитики
            Внедрение корпоративного хранилища позволяет хранить и использовать единый набор данных для анализа и визуализации в BI

            • Data Mining
            Хранение текущих и исторических данных в едином источнике помогает найти скрытые закономерности и спрогнозировать события

            • Машинное обучение
            Слой аналитических витрин в хранилище выполняет роль прикладных витрин данных для моделей машинного обучения
              Qlever Solutions
              поможет вам:
              для грамотного внедрения с нуля или для повышения производительности, устранения ошибок и расширения возможностей подключения к инструментам визуализации имеющегося хранилища
              Провести аудит КХД и составить дорожную карту
              для максимального использования возможностей современного ПО или в рамках политики импортозамещения
              Мигрировать на новые версии ПО или на российскую КХД систему
              от создания концепции, подбора методологии и построения DWH архитектуры в зависимости от ваших задач – требований к быстродействию и отчетам, до тестирования и поддержки
              Внедрить КХД под ключ
              Мы внедряем хранилища данных, используя масштабируемые технологии и гибридные методологии, адаптируя лучшие практики под ваши задачи.
              Архитектура DWH и инструменты для построения хранилища данных подбираются индивидуально в зависимости от целей, требований и возможностей заказчика.

              Инструменты и стэк


              BI/визуализация
              Облачные провайдеры
              VK Cloud
              Yandex Cloud
              Интеграционные механизмы
              Базы данных
              Greenplum
              ClickHouse
              PostgreSQL
              ARENADATA
              Оркестраторы
              Airflow
              dagster
              Вспомогательные инструменты
              dbt
              Open Metadata
              MINIO
              Prometheus
              Grafana
              Базовые технологии
              python
              SQL
              git
              docker.
              ANSIBLE

              Порядок разработки хранилища данных

              1. Аудит внутренних и внешних процессов компании, источников и типов данных
              2. Создание концепции и стратегии развития КХД, предоставление вариантов реализации, выбор методологий и инструментов для построения
              3. Разработка, тестирование и внедрение хранилищ данных
              4. Техническая поддержка и масштабирование КХД
                Узнайте больше о
                Data Warehouse
                Ознакомьтесь с методологиями проектирования корпоративных хранилищ данных, нюансами разработки и успешными кейсами внедрения корпоративного хранилища данных
                Извлекайте максимум из данных
                Оставьте заявку на разработку дорожной карты по построению DWH и наши эксперты подготовят ее для вас бесплатно. Для разработки дорожной карты необходимо проведение интервью.